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Abstract 

When Fourier syntheses are calculated using phase 
information from both isomorphous replacement and 
the refined model it is usual to combine the informa- 
tion for each reflection by multiplying the two proba- 
bility distributions together. It is well known that 
phase information from a model contains 'bias' 
towards that model; it is also true that such bias will 
be diluted by the process of phase combination. A 
method is proposed of tailoring the amplitude 
coefficients individually to correct for the likely 
residual bias in the combined phase. 

The refinement of macromolecules by crystallo- 
graphic techniques remains a time-consuming and 
often difficult procedure, essentially because the 
relationship between the X-ray observations and the 
required atomic parameters is non-linear and the 
usual least-squares techniques become trapped in 
false minima. It is therefore important to be able to 
produce a clear and unbiased representation of the 
electron density distribution so that the model can 
be rebuilt by hand. In many cases phase information 
is available from more than one independent source, 
most usually from (i) the isomorphous replacement 
method (independent of any model of the structure) 
and (ii) calculated from the current model. Similar 
considerations to those that follow apply to phase 
information derived from other sources. Phase infor- 
mation is normally represented as a probability distri- 
bution in which the phase circle is represented as a 
ring with variable density; the magnitude of the 
density corresponds to the probability of that phase 
angle being the correct one. Blow & Crick (1959) 
have shown that the minimum root-mean-square error 
in the final electron density map is obtained by using 
the distance from the centre of the ring to its centre 
of gravity as a weighting function in the Fourier 
synthesis, the phase being taken to be in the direction 
of the centre of gravity. This quantity is known as the 
'figure of merit' (m). Sim first considered the use of 
weights for phase angles calculated from a partial 
model of the structure in 1959 and then recast his 
scheme to follow that of Blow & Crick (Sim, 1960). 
When calculating maps based on phase information 
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from such partially-known structures a further com- 
plication arises from the fact that the heights of atomic 
peaks depend on whether the atom was included in 
the phase calculation, so that the resultant map is, in 
effect, biased towards the starting model even though 
this may be incomplete and partly wrong. Huber et 
al. (1974), Main (1979) and Vijayan (1980) have 
investigated this and confirmed that the Fo synthesis 
may be corrected by the addition of difference terms 
proportional to Fo[-IFcl. Thus if 

sum of the squares of the scattering 
factors for correctly placed atoms 

X 2 -- 
s u m  of the squares of the scattering 

factors of all the atoms included 

then the most truthful Fourier synthesis will be that 
based on the following amplitude coefficients (Main, 
1979): 

Fo +(2/X2-1)(Fo-Fc) (1) 

for acentric terms, and 

Fo +[2/(1 +X2) - 1](Fo - F~) (2) 

for centric terms. Let the multiplier for the difference 
terms be defined as Q~: 

Fo+Q~(Fo-F¢). (3) 

Rice (1981) has discussed this for the case of pro- 
tein refinement and it is clear that while g 2 cannot 
easily be identified accurately it is not difficult to 
estimate approximately (and hence derive Qc). Rice 
found that in the early stages of a refinement a sensible 
value for Qc would be about three. 

To combine the (essentially independent) phase 
information from isomorphous and calculated proba- 
bility distributions it is enough simply to multiply the 
probability distributions together and use the centroid 
of the resultant distribution as the best 'combined' 
phase with weight, m¢omb. However, the distributions 
must be appropriately weighted. It is by no means 
obvious what the optimum weights are: as Bricogne 
(1976) observed 'the only practical solut ion. . ,  seems 
to be an inspired relative weighting of the two sources 
of phase information'. In practice, inspiration has 
been forthcoming and the procedure is now fairly 
standard (see e.g. Rice, 1981). 
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What does not appear to have been adequately 
considered is the effect that such phase combination 
has on the choice of best amplitude coefficients for 
the Fourier synthesis. For those reflections well 
phased by the isomorphous replacement method the 
combination with the calculated phase information 
will introduce rather little bias; in other cases the bias 
will be essentially the same as in the partial structure 
phase (Qc). In other words, the bias in the combined 
phase will vary from one reflection to another between 
zero and Q~. Thus, we need to replace Q~ in (3) with 
Qcomb, Qcomb being different for each reflection. Then 
the coefficients used in the final Fourier will be 

mcomb[fo+Qcomb(Fo--Fc)]expiacomb. (4) 

NOW, if the phase distributions are normal we can 
associate an error, 0., with each, and the bias, Qcomb, 
in the combined distribution is simply 

11-' 
Q¢omb=L0.2 0.2j 2 - 5  , (5) 10., 0. J 

where the subscripts i and c refer to the isomorphous 
and partial structure distributions, respectively. 

Now, since the isomorphous replacement phase is 
independent of the model we may assume that Q, is 
zero, hence 

roll[, +,] Qcomb=Lo. J (6) 
Where the phase is uncertain and there is a Gaussian 
probability distribution of phase errors, the probabil- 
ity that a phase a is correct is given by 

P(a)=[1/(27r)U20.]exp[-a2/20.2], (7) 

where a is the phase angle and o- is the standard 
deviation of the distribution. Blow & Crick (1959) 
show that the best weighting function to minimize 
errors is given by the centre of gravity of this distribu- 
tion, which for a phase circle with unit radius is at 

m = exp [-½0.2], (8) 

where m is the usual figure of merit. In the special 
case of combining two unimodal normal distributions 
we would expect the resultant distribution to be 
weighted by 1/O .2 as in (5) above. Then from (8) it 
is clear that 0.z is proportional to - l o g  m and (6) 
becomes 

[ o l[ 1 , ]  
= + log mc (9) Qcomb - l o g m c J  - l o g m ,  - 

or, more simply, 

Qcomb=Qc[logmi/(logmc+logm,)]. (10) 

The probability distribution for the partial structure 
phase is well represented by this simple model; 
unfortunately, unless the isomorphous phasing is very 

good, some isomorphous distributions will be 
bimodal and thus m~ will lead to an underestimation 
of the amount of phase information in the distribution 
so that the estimate of Qcomb will be unduly pessimis- 
tic. In practice, we have found that even simpler 
schemes of determining Qcomb are capable of produc- 
ing marked improvements in the clarity of maps while 
still avoiding bias. 

We will briefly discuss the effect of the choice of 
Fourier coefficients for two of the enzymes we are 
currently refining. 

Phosphorylase b 

The first example is from the refinement of rabbit 
muscle phosphorylase b at 2.0 A resolution (Sansom, 
Stuart, Babu & Johnson, unpublished work). The 
phosphorylase molecule is large (M = 100 000 for the 
single subunit in the crystallographic asymmetric 
unit) and the initial model was built to an isomor- 
phous replacement map of only moderate quality so 
that refinement has been a time-consuming business. 
Fig. 1 shows identical portions of two maps calculated 
at'the stage where the R factor for the 52 300 data in 
the range 5 to 2 A was 0.37. The refinement at that 
stage did not include any model for the solvent and 
therefore calculated phases were not used below 5/~ 
resolution. Combined phases were used between 
5 and 3 A resolution and calculated phases from 
3 to 2 ~ .  Fig. l (a)  shows the map calculated with 
mcomb(2Fo-Fc) exp iacomb coefficients whereas the 
map in Fig. l(b) is calculated with the coefficients of 
(4) and (10) with Qc chosen as I. Clearly, the new 
coefficients produce an enormous increase in clarity, 
the contrast between the protein and the solvent is 
much greater than in Fig. l (a)  (owing in part to the 
inappropriate choice of very low resolution Fourier 
coefficients in Fig. l a) and closer inspection reveals 
that the protein density itself is greatly improved. 
Note in particular the much improved density for 
Trp 824 in the centre of the diagram and for the helix 
running along the top of the figure. 

Triose phosphate isomerase (TIM) 

Chicken TIM, a dimer of identical subunits of 247 
residues each, is being refined at 2.5/~, resolution 
(Artymiuk, Phillips & Taylor, unpublished work) 
using the restrained structure-factor least-squares 
program of Hendrickson & Konnert (1980). Between 
groups of cycles of refinement, rebuilding of the 
model into (3Fo -2Fc) exp iacomb maps has been per- 
formed on the laboratory's Evans & Sutherland PS2 
graphics system. 

The R factor at the time of calculating the maps 
was 0.24 from l0 to 2 . 5 ~ ,  with good chemical 
geometry. Fig. 2 shows density for representative 
residues calculated with identical combined phases 
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and mcomb but different coefficients, namely: 

(i) 3Fo-2Fc=- Fo +Qc(Fo-Fc), 
where Qc = 2; 

(ii) Fo -I-Qcomb(fo- fc), 

where Qeomb is evaluated using (10). 
The maps were examined on the graphics: there 

were no cases where the density was subjectively 
degraded using coefficients (ii) and numerous in- 
stances where it was improved (see Fig. 2); spurious 
density disappeared or was diminished (Fig. 2c) and 
new connections appeared to isolated strong density 
(Figs. 2a, b, d). Contouring map (i) at a lower level 
allowed some correct connections to be seen, but at 
the cost of still more spurious density features. Where 
major rebuilding was indicated in map (ii) but not 
map (i) the indicated modifications led to improved 
and chemically reasonable contacts with the rest of 
the molecule and to b.etter agreement between the 
two molecules in the asymmetric unit (related by a 
non-crystallographic twofold axis, which had not 
been used as a restraint in the refinement). 
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Fig. 2. Examples of electron densities for selected residues in TIM 
calculated using the same combined phases (and all terms 10- 

(b) 

Fig. 1. Electron density distributions for a portion of the phos- 
phorylase b unit cell. The two maps (a) and (b) are calculated 
as described in the text, with identical phases but different 
amplitude coefficients. The contour levels in both cases are at 
equal but arbitrary levels of positive density with the zero level 
omitted. Coordinates are shown superimposed on the density, 
these are those used in the structure-factor calculation. 

2.5A) but with: (i) coefficients 3Fo-2Fc; (ii) coefficients 
modified as described in the text. The contour level in all cases 
is 0.32 e A 3 and for any residue the identical volume of map is 
shown in both cases. The coordinates shown in maps (i) are 
those used to calculate a¢ and Fc for both syntheses; the rebuilt 
coordinates are shown in maps (ii). (a) Glu 119; (b) Lys 71; 
(c) Leu 492 (i.e. Leu 192 of molecule 2 in the asymmetric unit); 
(d) Residues 33 and 34. 
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Abstract 

Quantum-mechanical calculations of the modifica- 
tion of the X-ray scattering factor of an atom/ion in 
an electric field are compared with predictions of the 
semi-classical shell model. If the shell parameters are 
fitted to the dipole polarizability of the ion, the shell 
model is a very good representation of the scattering 
factor of the deformed ion, giving support to its use 
in estimating the effect of ionic deformation on X-ray 
diffuse scattering and X-ray Debye-Waller factors. 

1. Introduction 

Born (1942) was the first to consider the effect of 
modification of atomic scattering factors due to defor- 
mation of vibrating atoms and ions. More recently, 
Buyers & Smith (1966), Melvin, Pirie & Smith (1968) 
and Reid (1974a, b) have applied the shell model to 
investigate the effects of ionic deformation on X-ray 
diffuse scattering from alkali halides. In its simplest 
form the shell model, originally developed by Dick 
& Overhauser (1958) to account for dielectric proper- 
ties of alkali halides, separates the ion into a core 
and a shell coupled by a spring and has, with various 
modifications, proved a very useful classical param- 
etrization of inter-ionic force constants. However, its 
ability to describe modifications of atomic scattering 
due to ionic deformation is less clear. Melvin, Pirie 
& Smith (1968) and Reid (1974a, b) plausibly assign 
to the core and the shell quantum-mechanically calcu- 
lated charge distributions characteristic of the inner 
and outer electrons in the ion and, using the core-shell 
displacements calculated from the lattice-dynamical 
shell-model calculations, estimate the resultant 
changes in diffuse X-ray intensity due to the modified 
scattering factors. Robertson & Reid (1979) have 
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made similar applications of the shell model to X-ray 
scattering from Si, while Reid & Pirie (1980) and 
Reid (1983) have used the model to estimate the effect 
of ionic deformation on Debye-Waller factors. 
Although March & Wilkins (1978) have developed a 
method of calculating elastic X-ray scattering from 
solids in terms of non-rigid pseudoatoms, this quan- 
tum-mechanical approach cannot be readily com- 
pared with semi-classical shell-model specifications 
of charge deformation. 

In this paper we attempt an evaluation of the effec- 
tiveness of the simple shell model in specifying charge 
deformation of atoms and ions by comparing quan- 
tum-mechanical calculations of perturbed X-ray 
atomic scattering factors with shell-model predictions 
for isolated atoms or ions in electric fields. § 2 com- 
pares the shell-model theory with the corresponding 
quantum-mechanical theory. § 3 discusses the Kirk- 
wood-Pople-Schofield method of calculating pertur- 
bed wave functions, while § 4 analyses the results of 
the calculations. Finally, § 5 discusses the validation 
of the shell model in simulating dynamical deforma- 
tion of atomic/ionic scattering factors, and potential 
application of such mechanical models to describe 
static modifications of scattering factors in low- 
symmetry environments. 

2. Theory 

The X-ray atomic scattering factor for an unperturbed 
atom with N electrons is given by 

N 
fo = E ~ 0o* exp(ixS.rj)qJodz, (1) 

j=l  

where ffo(r~, r : , . . . ,  r j , . . . ,  rN) is the many-electron 
wave function of the atom, S = s-So is the difference 
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